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. In this thesis, we deal with Stone-Weierstrass type approximation theorems for

continuous vector-valued functions in both the archimedean and non-archimedean
settings. This theorem, first established by M.H. Stone in 1937 for the function
spaces $C(X,\mathbb{R})$ and $C(X,\mathbb{C}),$ is a generalization of the
classical Weierstrass approximation theorem of 1885 for the function space $C
([0,1],\mathbb{R}).$ The first results in the non-archimedean area were proved by
Dieudonne in 1944 and later by Kaplansky in 1949. We present the extensions of
the Dieudonne-Kaplansky theorems to the function space $C(X,E)$ obtained by
Prolla (1977, 1982) and Prolla-Verdoodt (1997) under the uniform, compact-open
and strict topologies, where $X$ is a $0$-dimensional topological space and $ES$ a
topological vector space which is either non-archimedean or is over some non-
archimedean valued field $\mathbb{F}.$ The approximation problem consists in
finding the conditions on a $C(X)$-submodule $\mathcal{A}$ of $§% C(X,E)$, so
that $\mathcal{A}$ is dense in $C(X,E)$ in the above mentioned topologies. The
key argument in the proofs is to use suitable lemmas on \textquotedblright partition
of unity\textquotedblright . The last chapter contains some new results for the strict
topology, where, in addition to the Stone-Weierstrass theorem, we give a
characterization of maximal closed submodules and ideals in $C_{b}(X,E
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